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Williams-Watts Dielectric Relaxation: 
A Fractal Time Stochastic Process 

Michael F. Shlesinger I 

Dielectric relaxation in amorphous materials is treated in a defect-diffusion 
model where relaxation occurs when a mobile defect, such as a vacancy, reaches 
a frozen-in dipole. The random motion of the defect is assumed to be governed 
by a fractal time stochastic process where the mean duration between defect 
movements is infinite. When there are many more defects than dipoles, the 
Williams-Watts decaying fractional exponential relaxation law is derived. The 
argument of the exponential is related to the number of distinct sites visited by 
the random walk of the defect. For the same reaction dynamics but with more 
traps than walkers, an algebraically decaying relaxation is found. 

KEY WORDS: Relaxation; fractal time; random walk; defect diffusion; 
dielectrics. 

1. INTRODUCTION 

It  has been observed  f rom an extens ive  survey  of  the l i tera ture  that  the  

die lect r ic  re laxa t ion  o f  m a n y  mater ia l s ,  inc lud ing  p o l y m e r s  and glasses,  has  

universa l  proper t ies .  (1'2) I f  O(t) represents  the decay  o f  po l a r i za t i on  o f  a 

d ipole  in a d ie lect r ic  ma te r i a l  after the sudden  r e m o v a l  o f  a s teady  electr ic  

field, then the die lect r ic  funct ion ,  e(co), is g iven  by 

= e ' (co)  - i e " (o ) )  = ) e - i~ dO(t )  d t  
e ~  --  c o o d t  

(1) 

where  eo~ and e 0 are  the h igh - f r equency  and stat ic  d ie lect r ic  constants .  I f  
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there is only a single relaxation time T, then r = e x p ( - - t / T ) ,  as in Debye's 
classical theory, t3) which leads to 

1 T w  
e'(09) - 1 + 092T 2 and e"(09) = 1 + 092T 2 (2) 

Although this form fits some materials composed of simple molecules 
the vast majority of data remains outside the description of this theory. As 
can empirical expedient Williams and Watts (a) found that the form 

O(t) = e x p [ - - ( t / T ) " ] ,  0 < a <~ 1 (3) 

fit data exceedingly well. For example, the data of Ishida and Yamafugi ~5) on 
polyvinylacetate at 62.5~ are consistent with an e(~o) derived from 
equations (1) and (3) over five frequency decades when a = 0.56. 

Why does Eq. (3) hold for so many materials? The answer we propose 
is that Eq. (3) arises from a limit theorem for a stochastic process. When the 
exponent a is less than one the stochastic process will involve the concept of 
fractal time which will be discussed in the next section. 

The type of model we consider was first introduced by Glarum, t6) who 
proposed that a frozen-in dipole could relax when a mobile defect in the 
medium reached the dipole. In glassy systems the defect may be a vacancy 
which upon reaching the dipole relieves local strains allowing the dipole to 
relax. Other candidates for the defect include grain boundaries, and dangling 
bonds in glasses, and local conformational abnormalities in polymers. Two 
assumptions were made by Glarum~6): (i)the defect diffusion was one dimen- 
sional, and (ii)only the defect nearest to the dipole contributed to its relax- 
ation. This treatment was not successful, but led to a companion theory of 
relaxation in viscoelastic fluid by Phillips et al., ~7) where nearest- and next- 
nearest-neighbor defects were taken into account. Eventually, Bordewijk (8) 
gave the proper analysis for treating all the defects, finding the 
Williams-Watts function of Eq. (3) with a = 1 and a = 1 for one and three 
dimensions, respectively. He concluded that in three dimensions to find 
deviations from a single relaxation time with a defect-diffusion model is not 
possible unless one restricts the diffusion in some manner. No special way 
was proposed. 

Independently, diffusion reaction schemes were investigated for hopping 
electrons being captured by electron scavengers in frozen chemical 
solutions, t9-11) Although a tunneling mechanism may be more appropriate 
for these systems, the mathematical analysis for a diffusion mechanism can 
be readily transferred to the dielectric relaxation problem. ~16) The new 
ingredient utilized in the electron-scavenging problem, and not in the Glarum 
picture, is an infinite mean time (t) between jumps of a single electron. This 
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is called a fractal time or dispersive transport process, and was first used for 
the analysis of charge transport in amorphous semiconductors. "3-15) 
Following the analysis of Hamill and Funabashi (1~ it is shown here that 
when there are many more walkers (defects) than traps (dipoles) and each 
walker's jump times form a fractal point set, then the lifetime distribution of 
the traps is precisely of the Will iams-Watts form. This is the case for 
dielectric relaxation, but for electron scavenging there are usually many more 
static scavengers than there are mobile electrons. Helman and Funabashi ~lz) 
have shown for fractal time processes that one cannot use relative coor- 
dinates (i.e., switch traps with walkers) and expect the same relaxation 
functions for the minority species. When the minority species are the fractal 
time walkers (as in the electron-scavenging model) one expects, at long 
times, an algebraic (i.e., not a Will iams-Watts)  decay of the walkers. The 
algebraic decay law was first given by the author (11) and later verified by 
different calculations,~12' 17-~9) but the first clear understanding of the nonap- 
plicability of relative coordinates was given by Helman and Funabashi. (12) 

We discuss fractal time in the next section, and then derive for the 
fractal time defect-diffusion model the Will iams-Watts relaxation law in 
Section 3. The argument of the exponent is related to the number of distinct 
sites visited after a time t by a random walker. Finally some other reaction 
schemes are mentioned in Sections 4 and 5. 

2. FRACTAL TIME 

Consider a process where the time between events is a random variable. 
Let 

~( t )  dt  = Prob[time between events c(t, t + dr)] 

The mean (t) and median t m times between events are 

( t )  = t~ ( t )  d t  and tg(t) d t  -- 1/2 (4) 

If (t) is finite, then a natural scale exists in which to measure time. If  one 
waits long enough it will appear that events occur at a constant rate ( t)-1.  If  
(t) is large, then events will occur at a slow rate, but it could not be said that 
events are rare. We reserve the term rare events when (t) = m so no natural 
time scale exists in which to gauge measurements. Even though (t) is infinite, 
t m is finite so events still occur. 

Assume three events in a row have occurred at times t = 0, t = r, and 
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t = T and that the value of  T is known. The probability that the middle event 
occurs at t = r is 

~t(r) qJ(T- r) 
f ( r )  = fo r qJ(r') g t (T--  r ' )  d r '  

(5) 

where the denominator insures the proper normalization. For  a purely 
random process ~, ( t )= 2 exp(--2t) and f ( r )  is a uniform distribution in the 
interval (0, T). Thus the most likely time for the middle event is r = T/2, i.e., 
on the average events occur at regular intervals. I f  (t) is infinite then r = T/2 
is certainly not the most  likely value of  r because the process must look as 
different from a constant rate renewal process as possible. In fact r = T/2 
would be the least likely value of  r, and values of  r closer to t = 0 and t = T 
are more probable. It can be shown that for rare events (mean renewal rate 
of  zero) the time sequence of  events must appear in self-similar clusters akin 
to points in a Cantor  set (see Fig. 1). We will now construct a waiting-time 
distribution ~,(t) which can generate a fractal set of  event times. 

For the purely random (no memory)  case ~ , ( t ) = 2  exp( -2 t )  and in 
Laplace space 

~,*(s) ~- exp( - s t )  ~(t) dt ~ 1 - s<t> + o(s 2) as s - + 0  (6) 

where 

<t> : o ) / a s  . . .  

. . . .  X 4 2 4 7 2 

Fig. 1. We have performed three iterations on the Cantor bar. If the spacing between 
remaining bars is considered to represent the time between events in a process, then a self- 
similarity of events times is introduced. After an infinite number of iterations of the Cantor 
bar, the remaining Cantor set will have a regular self-similarity and a fractal dimension of 
In 2/ln 3. The example of Eq. (7) uses a Cantor set of parameters to generate a waiting-time 
distribution which has a random fractal nature for the set of event times. 
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Now consider (z~ 

1 
qJ(t) - ~ p"2"  e x p ( - 2 " t ) ,  ~. < p < 1 (7) 

P ,=1 

where an order-of-magnitude longer duration between events (~tn-compared 
to 2 n+ 1) occurs with an order-of-magnitude less probabil i ty (p" -compared  to 
p , + l ) .  This is the same manner  in which spacings occur in a Cantor  set, and 
thus one might say that  Eq. (7) is a functional form of a Cantor  set. 

Laplace transforming,  we obtain 

p j : ,  s +----s = p q / *  + l + ( s / 2 )  (8) 

This scaling equation has the solution (2~ 

~,*(s) = 1 + s~'K(s) + 
1 - p  ~ (--1)Jps j 

p j~=~ 2 J - p  (9) 

where 

a = In p/ln )~ 

and a < 1 so 

(t} = 09r = O)/as = oo 

and K(s) is a oscil latory function periodic in in s with period In ,~. 
Our example was chosen so one could see clearly where self-similarity 

was built into q/(t) and to have a appear  naturally in the form of fractal 
dimension. Actual ly any ~(t)  which behaves as t - 1 - ~  at long times will have 
the same properties if a < 1. 

3. A TRAP A M I D S T  A S W A R M  OF WALKERS (1~ 

A frozen dipole is situated at the origin of  a finite lattice with V sites. 
Other lattice sites are occupied by a random walker (defect) with probabil i ty 
c, i.e., there are N = eV  walkers on the average. The dipole relaxes when the 
first walker reaches the origin. All the randomness  of  space is incorporated 
into choosing the appropriate  waiting-time distribution between jumps  of  a 
walker on a periodic lattice following the ideas of  Scher and Lax. (21) 

Let F(lo, t )d t  = Prob(first  passage to the origin of  a walker starting at 
t = 0 at site l 0 occurs in (t, t + dt)). The probabil i ty of  starting at l 0 is V-1. 
The probabil i ty that  the first passage occurs after t ime t is 
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1-ftoF(lo, t')dt'. The probability r that none of the N walkers has 
reached the origin by time t is 

1 t t') dt'] 0 t,  Lfo  /o (io) 

i.e., ~( t )  is the lifetime distribution of the trap. In the limit N,  V ~  m with  c 
fixed, Eq. (10) becomes 

~(t) = exp [-c fi I(t') dt' ] (11) 

where I(t) is the flux of walkers at time t into the Qrigin, i.e., 

I(t) = Z F(l, t) = ~ ~ Fn(l ) q/n(t) 
1 l n = 0  

(12) 

where F,(1) is the probability to begin at site 1 and reach the origin for the 
first time after n steps, and ~,,(t) is the probability density that the nth step 
occurs at time t. Note that we began by considering the first passage of only 
the first walker of the N walkers to reach the origin and have ended up with 
the flux of walkers into the origin. This point was confused by the author ~ 
and the present derivation is similar to that of Tachiya, (z2) who proved that 
the flux was the appropriate quantity to calculate in the thermodynamic 
limit. 

Let us calculate the Laplace transform 

I*(s) = ~ ~ F*(s)[~'*(s)l" 
I ~ 0  n = 0  

which is in the form of a generating function of F*(s). It can be shown that 

I*(s) = ([1 -- ~/*(s)] G(0, V*(s))) -1 -- 1 (13) 

where G(O,z)= Y~=o p,(O)z" and p,(0) is the probability that a walker 
beginning at the origin returns at the nth step. For a simple cubic lattice 

I 1 .516-  3 4  (1 --z)1/2+ ... (three dimensions) (14) 
G(0, z) = zc 

(1 --  z z)- 1/2 (exactly) (one dimension) 
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Thus when (t) is finite, regular diffusional behavior exists at long times and 
for small s 

I*(s) ~ t 0"659/s(t) (three dimensions) (15) 
f (2Is( t))  1/z (one dimension) 

yielding 
te -e~ t (three dimensions) (16) 

0(t) = (e_r t x/7 (one dimension) 

precisely Bordewijk's result. 
For ~'(t)~ aA/tl+~F(1 - a )  at tong times so (t) is infinite, then 2 

and 

I*(s) ~ ) 0"659/As~ 
(2/A)1/2 s-~/2 

(three dimensions) 

(one dimension) 

t e-~C~ t~)/l"(1 + a) (three dimensions) 
(~(t) ~ fe_tconstt~m/r( 1 + a/2) (one dimension) (17) 

precisely the Williams-Watts form for dielectric relaxation. Note that if 
a > 1/2 the defect motion must occur in more than one dimension, even 
though in some sense a polymer chain has a one-dimensional character. 

It may also be shown that when (t) is finite, t23) the number of distinct 
sites S(t) visited by a random walker on a periodic lattice has at long times 
the form 

S(t) ~ t t/G(O' 1)(t) (three dimensions) (18) 
( (8t/n(t) ) 1/2 (one dimension) 

and when q/(t)~ aAt- l -~/F(1 - a )  so (t) is infinite, then <14) 

S(t) ~ 1At~/G(O' 1) F(1 + a) (three dimensions) (19) 
tA lIEu/ElF(1 + a/2) (one dimension) 

which is just another way of viewing the flux which appears in the exponent 
of the Williams-Watts function. More detailed studies of S(t) including the 
early time regime and finite lattice size effects will be presented elsewhere by 
the author. Results like Eq. (19) can also be obtained when (t) is finite if the 
walker is restricted to a fractal lattice. ~24>'<3~ The next challenge is to derive 
~,(t) from first principles, perhaps in a similar manner to that of Scher and 
Lax, ~21) who were the first to attempt to derive a ~t(t). 

Finally, note that the nature of the defects can change as a function of 
temperature, say, single vacancies coalescing into large voids, as the glass 

2 1 thank R. Orbach for pointing out the importance of the F(I  + a) factor in the exponential, 
especially when calculating the temperature dependence of the relaxation when a is 
temperature dependent. In a particular model for qJ(t), A may depend on a. 
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transition temperature is approached from above. In our model, any 
activation energy of  the relaxation represents the motion of  the defects. 
Accordingly we expect a rise in the activation energy near the glass tran- 
sition temperature. 

4. ONE WALKER IN A FOREST OF TRAPS 

For one walker and one trap with diffusion constants D w and D r o n e  

can place fixed coordinates on either species and let the other one move with 
the sum of the diffusion constants D w + D r. When there are many walkers 
and one trap can we transform this to a many-traps and one-walker problem 
and use our results of  the last section? The answer is no if the waiting-time 
distribution of  the walkers has (t) infinite. Consider first the case of  one 
walker with qJ(t) ~ t 1-~ at long times in a system with two fixed traps. The 
mean time for any motion is infinite. In the frame of  the walker (see Fig. 2) 
the two traps now each move with the walker's q/(t) and the new waiting- 
time distribution W(t )  for any motion to occur is 

W(t )  = 2gt(t) gt(t') dt '  (20) 

where we have taken into account  that the first trap moves (in the walker's 
frame) at time t and the second trap did not yet move in the interval (0, t). 
The vice versa situation leads to the factor of  2 in Eq. (20). At long times 
W(t)  ~ t 1+2c~ which has a finite (t) if a > 1/2. Thus the two relative frames 
of motion are not equivalent for fractal time processes. It was shown by the 
author (11) in a special case that the decay law for the lifetime of  the walker 
at long times, 

O(t) ~ t -~  (21) 

WALKER TRAP 
�9 X 

TRAP WALKER 

X �9 

WALKER TRAP 
A �9 B x 

Fig. 2. For normal diffusion one can arbitrarily choose which of two species unequal in 
number is mobile and which is static. For a fractal-time diffusion process two different 
behaviors will result depending on which species is mobile. For an algebraic waiting time 
distribution decaying as t 1"8, the mean time for a movement with one walker is infinite, but 
finite in the relative frame with two walkers. 
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is appropriate for one walker amidst many traps. Note the strong distinction 
to the Williams-Watts relaxation law. Equation (21) was later derived more 
generally by Helman and Funabashi, (lz) Movaghar, (18) Scher, (17) and 
Blumen et al. (19) We follow the derivation of the last reference, writing 

(3O 

~(t) = ~ ((1 - c)S")x ,( t )  (22) 
n = 0  

where c is the probability that a site contains a trap, X,(t) is the probability 
that n steps have been taken by time t, S ,  is the number of distinct sites 
visited by an n-step random walk, and the brackets indicate that an average 
over the trap configurations needs to be taken. In three dimensions S ,  ~ bn 
with b a constant. For c ~ 1 

O*(s) 1 - q/*(s) @ [e_bCql,(s)], 
S n = 0  

_ 1 - ~ * ( s ) [ i -  e-C%/*(s)] -1 
s 

(23) 

substituting for ~t*(s) the form of Eq. 
Such decays with a ~0 .3  have 
measurements, for the recombination 
solar cells such as a -  Si:H. 

(9) leads to the decay law of Eq. (21). 
been seen, (25) via light intensity 
of electrons and holes in amorphous 

5. WALKERS AND NEVER-FILLED TRAPS 

In the discussion so far the walker and the trap both disappear upon 
meeting. When only the walker, but not the trap disappears a new situation 
arises for regular diffusion. Such conditions lead to the following lifetime 
distribution of a set of walkers, (26-29) 

O(t) "" exp(--const t el(a+ 2)) (24) 

where d is the dimension. This should not be confused with the 
Williams-Watts decay discussed in Section 3. Equation (24) is derived by 
considering a walker in a spherical volume of radius R without traps. The 
mean time for a Brownian particle to leave such a region is proportional to 
R z in any dimension, and Ov(t)= exp(--Dt/R2), is proportional to the 
lifetime distribution for leaving this volume. D is the diffusion constant. 
Averaging Or(t) over a Poisson distribution of such volumes ( V ~  R e) yields 
Eq. (24). 
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NOTE ADDED IN PROOF 

It is shown in Ref. 30 that S ( t )  ~ t ds/2 for a particular random walk, where 

d s denotes the spectral dimension. The proof that this holds for fractal 

lattices in general was given by the referee of this paper, D. Dhar.  

REFERENCES 

1. A. K. Jonscher, Nature 267:673 (1977). 
2. K. L. Ngai, Comments Solid State Phys. 9:127 (1979). 
3. P. Debye, Polar Molecules (Dover, New York, 1945). 
4. G. Williams and D. C. Watts, Trans. Faraday Soc. 66:80 (1970). 
5. Y. Ishida and K. Yamafugi, Kolloid Z. 177:7 (1961). 
6. S. H. Glarum, J. Chem. Phys. 33:1371 (1960). 
7. M. C. Phillips, A. J. Barlow, and J. Lamb, Proc. Soc. (London) A329:193 (1972). 
8. P. Bordewijk, Chem. Phys. Lett. 32:592 (1975). 
9. W. P. Helman and K. Funabashi, J. Chem. Phys. 66:5790 (1977). 

10. W. H. HamiU and K. Funabashi, Phys. Rev. B 16:5523 (1977). 
l l . M .  F. Shlesinger, J. Chem. Phys. 70:4813 (1979). 
12. W. P. Helman and K. Funabashi, J. Chem. Phys. 71:2458 (1979). 
13. E. W. Montroll and H. Scher, J. Stat. Phys. 9:101 (1973). 
14. M. F. Shlesinger, J. Stat. Phys. 10:421 (1974). 
15. H. Scher and E. W. Montroll, Phys. Rev. B 12:2455 (1975). 
16. M. F. Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. (USA), 81:1280 (1984). 
17. H. Sober, J. Phys. (Paris) Colloq. 42:C4-547 (1981). 
18. B. Movaghar, J. Phys. C 13:4915 (1979). 
19. A. Blumen, J. Klafter, and G. Zumofen, Phys. Rev. B 27:3429 (1983). 
20. M. F. Shlesinger and B. D. Hughes, Physica A109:597 (1981). 
21. H. Scher and M. Lax, Phys. Rev. B 7:4491 (1973). 
22. M. Tachiya, Rad. Phys. Chem. 17:447 (1981). 
23. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6:167 (1965). 
24. J. Klafter, private communication. 
25. Z. Vardeny, P. O'Connor, S. Ray, and J. Tauc, Phys. Rev. Lett. 44:1267 (1980). 
26. P. Grassberger and I. Procaccia, J. Chem. Phys. 77:6281 (1982). 
27. R. F. Kayser and J. B. Hubbard, Phys. Rev. Lett. 51:79 (1983). 
28. B. Ya. Balagurov and V. G. Valks, Soy. Phys. JETP 38:968 (1974). 
29. J. Klafter, G. Zumofen, and A. Blumen, J. Phys. Lett. 45:L49 (1984). 
30. B. D. Hughes and M. F. Shlesinger, J. Math. Phys. 23:1688 (1982). 


